CindyJS Plugins

Extending the mathematical visualization framework

Martin von Gagern'*** and Jiirgen Richter-Gebert2**

! University of Potsdam, Germany
gagernQuni-potsdam.de,
http://www.math.uni-potsdam.de/professuren/didaktik-der-mathematik
2 Technical University of Munich, Germany
richter@ma.tum.de,
http://wuw-ml10.ma.tum.de

The final publication is available at link.springer.com
d0i1:10.1007/978-3-319-42432-3_40

Abstract. CindyJS is a framework for creating interactive (mathemat-
ical) content for the web. It can be extended using plugins, two of which
are presented here.

— Cindy3D enables displaying 3D content via WebGL.

— The KaTeX plugin typesets formulas within CindyJS.

We also discuss the general structure of plugins in CindyJS.

Keywords: Interactive visualization, web technologies, 3D, geometry,
WebGL, OpenGL, typesetting, TeX, KaTeX

1 Introduction

The CindyJS project is a system for the presentation of visual and interactive
mathematical web content (see [§]). It aims to be feature compatible with Cin-
derella [7], a Java-based authoring system. It is possible to extend Cinderella
using custom plugins. CindyJS provides a similar mechanism to allow exten-
sion by plugins. Compared to the original Cinderella plugin interface, the plugin
api of CindyJS offers more possibilities: while a plugin to Cinderella is essen-
tially restricted to providing new functions for the built-in scripting language
CindyScript, plugins in CindyJS can perform additional tasks, by accessing se-
lected portions of the internal data of a visualization, like the canvas of the
construction or unevaluated expressions passed to a plugin-provided function.

* The author was supported by the project “M C Squared” which has received funding
from the EU 7th Framework Programme (FP7/2007-2013) under grant agreement
no. 610467.

** The authors were supported by the DFG Collaborative Research Center TRR 109,
“Discretization in Geometry and Dynamics”.

http://link.springer.com/chapter/10.1007/978-3-319-42432-3_40
http://link.springer.com/chapter/10.1007/978-3-319-42432-3_40

2 von Gagern—Richter-Gebert

2 Plugin Interface

At the JavaScript level, a plugin for CindyJS is simply a callback method reg-
istered with either the CindyJS framework as a whole, or one specific widget.
That function can interact with CindyJS using a set of API functions, the most
important of which are probably a function to define new CindyScript func-
tions and a function to evaluate a given expression. In order to help maintain
backwards compatibility, plugins must declare which version of the API they
are using, so that the framework can apply a compatibility layer if its internal
representation were to change. Here is a simple example:

// Register a plugin called "hello”, using plugin API version 1
CindyJS.registerPlugin(l, "hello", function(api) {

// Define a CindyScript function called "greet”
// that takes a single argument
api.defineFunction("greet", 1, function(args, modifs) {

// Evaluate the argument ezpression
// (as opposed to inspecting the unevaluated formula)
var argQ = api.evaluate(args[0]);

// Return string as a CindyScript value object,
// we might want to offer some API for this one day

return {
ctype: "string",
value: "Hello, " + api.instance.niceprint(arg0)
3
B

b;

3 Viewing spatial objects using Cindy3D and WebGL

The goal of the Cindy3D plugin is visualizing spatial mathematical objects using
WebGL.

Cinderella (the Java ancestor of CindyJS) has a plugin of that same name [@],
based on JOGL to provide OpenGL bindings. The Cindy3D plugin for CindyJS
started out as a port of that Java plugin, but by now most of the code has
been rewritten, so the main connection is a common API that is exposed to
CindyScript. In the long run, it is expected to port large ports of the plugin back
to the Java version, for consistent results, easier maintainance and common sets
of features. In the subsequent text, the term Cindy3D will refer to the CindyJS
plugin only.

Cindy3D features four kinds of geometric primitives: spheres, rods, polygons
and meshes. A sphere is often used to denote a point in a 3D setup, just as

CindyJS Plugins

// Set up 3D environment

begin3d () ;

background3d([0,0,0]1) ;

size3d(2.4); // Default size of points and segments

// Declare some constants which may be used to tune appearance
n=2300; r1 =1; r2 =0.3; k =5; 1 = 3;

// Compute point for given parameter value w
f(w):=(sin(1*w), cos(1l*w), 0)*(r1 + r2+*cos(k*w))
+ (0, 0, r2xsin(k*w));

// Connect consecutive points with a colored rod
repeat(n, i,

wl = i/n*360°;

w2 = (i+1)/n*360°;

color3d(hue(i/n));

draw3d(f (w1), £(w2));
)5

end3d () ;

Fig. 1. Code and result for a simple 3D object

4 von Gagern—Richter-Gebert

disks denote points in the planar view of CindyJS. A rod is a cylinder with
two spherical endpoints, and therefore the 3D counterpart to a line segment.
A polygon is a planar surface (although it’s the user’s task to ensure that the
vertices actually lie within a single plane). Non-planar surfaces are modeled as
meshes, which are triangle meshes internally but quadrilateral meshes in the
CindyScript APL.

Contrary to many other 3D rendering environments, spheres and rods are
not subdivided into triangle meshes. Instead, an object which covers the sphere
or rod is drawn with a custom fragment shader to render a high-fidelity rep-
resentation of the actual geometric object using a raycasting approach. In the
case of a sphere, the covering object is a square facing the camera and just in
front of the sphere. For the rod, the covering object is a box containing the ac-
tual rod. One consequence of this rendering approach is that the position of the
geometric primitive being rendered does not correspond to the position of the
final point once it’s rendered: the depth may differ, so the shader code has to
update the fragment depth. This requires the use of a WebGL extension called
EXT_frag_depth which isn’t available on all devices yet, although the percentage
of supported devices is ever increasing.

Cindy3D employs some simple raycasting to provide cheap yet realistic light-
ing of the scene. The details of the appearance can be controlled by placing lights,
by controlling object material properties like color or shininess, and of course by
placing the camera and configuring its lens.

Cindy3D supports translucent objects, which is important for many mathe-
matical visualizations. This is a challenging task, since for accurate results the
scene has to be rendered strictly from back to front. As of this writing, Cindy3D
doesn’t sort its primitives yet. But it already represents all its triangles as distinct
objects, which greatly simplifies the task of back-to-front rendering, since the tri-
angles of different meshes can then be sorted as a whole, giving correct order
in regions where both meshes twist around one another. Even more demand-
ing would be the task of accurate back-to-front rendering in places where the
constituent triangles intersect. That would require computing the corresponding
intersections. No such endeavur is planned for the near future. In commonly
used examples it is often surprising how close one has to look to spot errors due
to the incorrect rendering order of the current naive implementation.

Cindy3D is not designed to allow manipulation of displayed objects. The
objects are constructed from a sequence of drawing commands in CindyScript,
and then viewed in Cindy3D as they are. What can be controlled interactively is
the configuration of the camera. It can be rotated around the object, which for
every point and purpose is the same as rotating the object around the look-at
point of the camera since light sources can be fixed to the camera or the object at
the user’s discretion. It can also be rotated around itself, or translated in three
spatial directions. The camera can move closer to the object, or farther out,
which is colloquially called a zoom. It can also perform an actual photographic
zoom, i.e. change the field of view. All of these operations are accessible by mouse
movements, in combination with modifier keys.

CindyJS Plugins 5

Fig. 2. Translucent Enneper surface with spheres indicating grid points

The source code of Cindy3D is clearly structured into code which provides
specific bindings to the CindyJS API, and code which does the internal data
representation and manipulation. It would be fairly easy to replace the former
by bindings for some other software package, in order to turn Cindy3D into a 3D
model viewer for a different web-based (or at least browser-based) application.

4 Typesetting formulas using KaTeX bindings

Some mathematical content can be best described using a combination of geo-
metric elements and formulas. Sometimes it is enough to include the formulas in
the text surrounding a given widget. But if the text has to be positioned with
respect to a given element of the widget, or perhaps contains numbers which
change during interaction, then it is important to typeset these formulas within
the widget.

The lingua franca for entering formulas is TEX for most mathematical com-
munities. Cinderella comes with its own home-grown parser and renderer for
TEX-like formulas. For CindyJS it was decided not to port that parser, but
instead build on one of the existing efforts to bring math typesetting to the
web. While MathML has been intended as default representation for formulas,
browser support for it is severely lacking, with no change anticipated in the near
future.

The most common sollution is MathJaz [3], a JavaScript library to render
formulas. But MathJax has several problems which make it unsuitable for the
application at hand. It operates on the HTML DOM tree, so one would have
to somehow position the text above the widget, instead of drawing it to the
widget canvas the same way geometric objects are being drawn. It operates
asynchroneously, so there is a delay between the time when drawing a formula
is requested and the time when the typeset version of said formula is actually

6 von Gagern—Richter-Gebert

B

Il

o
I

= c0s(26.57°) = +-0.89 (m) Y (aw — by> (+0.89z + 0.45.1!)
sin(26.57°) = +0.45 Y bx + ay) \+0.45z + 0.89y

Fig. 3. Educational widget using typeset formula

ready for display. This fits in poorly with the synchroneous drawing paradigma
employed by CindyScript.

Looking for an alternative, we found the KaTeX project [I]. It provides
synchroneous operations, and usually renders significantly faster than MathJaz.
The main drawback is its lack of features: many things supported by MathJax
are (or at least were) not available in KaTeX. We identified those features whose
absence would cause the most trouble for existing or envisioned content, and
had those features implemented for KaTeX. Foremost on that list is support for
matrices, which was developed for CindyJS but has been merged into the official
KaTeX code base as well.

Just like MathJaz, KaTeX is designed to modify the HTML DOM tree. But
it has an internal intermediate representation of how to arrange and nest its
boxes, from which the actual HTML elements are being generated. Using this
representation it was possible to modify the code in such a way that instead of
creating HTML elements it creates canvas drawing commands. Since the internal
representation only provides vertical placement information, horizontal position-
ing has to measure text dimensions. For this reason, the render-to-canvas process
has two phases. In the first phase, the individual blocks are measured and po-
sitioned relative to one another. The result is an object which contains enough
data to render all required glyphs, but which also has overall measurements of
the whole formula. These can be used to position the box, e.g. for horizontal
alignment, before the glyphs get actually drawn to canvas. The draw-to-canvas
feature hasn’t been merged into the official KaTeX (yet?), mainly since it caters
for some very specific use cases only. Nevertheless, this feature can be of use
to other projects facing the same problem of how to place high-quality math
typesetting in a web application based on the HTML canvas element.

The KaTeX plugin for CindyJS is a fairly thin layer binding CindyJS to
a version of the KaTeX library which includes our customizations like render-
to-canvas. It is different from other plugins in that it doesn’t provide any new
CindyScript commands. Instead it modifies the behavior of existing commands

CindyJS Plugins 7

using a hook in the CindyJS rendering pipeline. Much of the complexity of
the plugin, however, is spent on ensuring the automated loading of required
resources. Fonts in particular are difficult to handle, since on some browsers
loading of these only starts once they are actually being used, so they won’t be
available upon that first use. In this situation, the KaTeX plugin will not render
the text but instead wait for the required fonts and trigger a repaint once they
become ready.

5 Other plugins

There have been other successfull applications of the plugin infrastructure as
well. The following list demonstrates the high flexibility of the plugin infrastruc-
ture.

CindyGL is a tool which allows running a subset of the CindyScript language
on the GPU. It is described in a separate article, [5].

QuickHull3D is an algorithm [2] and a Java library [4] used by Cinderella to
implement its convexhull3d operation. That Java code was compiled to
JavaScript using GWT, and made available as a plugin, in order to provide
compatibility. This is a temporary solution since it would be preferable to
have a native JavaScript implementation inside the core of CindyJS, which
is something currently being worked at. However, this setup demonstrates
that plugins can be used to build connections even to some Java libraries.

MC Squared (or Mathematical Creativity Squared) is a project which allows
authors to combine widgets from various sources into so-called C-Books.
When viewing them in a HTML5 environment, CindyJS is used to display
Cinderella widgets, and a plugin is used to realize the integration into that
specific environment, in particular the communication with other widgets.

Metadata extraction from images generated by the ornament drawing app
10rnament was demonstrated in a proof-of-concept plugin implementation.
This made it possible to post-process the ornaments in a way compatible
with the symmetry group used for their creation.

Tests in the CindyJS test suite sometimes use plugins to allow a CindyJS in-
stance to report results back to the testing framework.

Development of the complex tracing implementation within CindyJS itself
was helped by visualizations of the tracing process. One instance of CindyJS
was showing some construction to be interacted with, while a second instance
turned debug logs of the operations behind the scenes into helpful visualiza-
tions, providing a real-time view of the corresponding internal computations.
Those logs were generated by the first instance and made available to the
second via a custom plugin.

6 Conclusion

Plugins are a useful way to extend a software framework in order to adapt it
to new requirements. Often the people writing the plugins are distinct from

8 von Gagern—Richter-Gebert

those writing the core framework. So far, CindyJS has not attracted any third
party plugins that we know of. But the fact that plugins are being used by
the developers themselves ensures that the plugin infrastructure is powerful and
flexible enough to accomodate various requirements. They are particularly useful
for connecting optional components that provide their own interfaces, translating
between different conventions and representations. Plugins are the perfect tool
for extending functionality for custom applications without bloating the core
implementation for everyone.

References

1. Ben Alpert and Emily Eisenberg. Katex. https://khan.github.io/KaTeX/, 2013.

2. C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. The quickhull algo-
rithm for convex hulls. ACM Trans. Math. Softw., 22(4):469-483, December 1996.

3. Cervone Davide, Volker Sorge, Christian Perfect, and Peter Krautzberger. Mathjax.
https://www.mathjax.org/, 2009.

4. John Lloyd. Quickhull3d — a robust 3d convex hull algorithm in java. http://www.
cs.ubc.ca/~1loyd/java/quickhull3d.html, 2004.

5. Aaron Montag and Jiirgen Richter-Gebert. CindyGL: Authoring GPU-based inter-
active mathematical content. unpublished. Submitted to ICMS 2016 Berlin.

6. Matthias Reitinger and Jan Sommer. Cindy3d. http://gagern.github.io/
Cindy3D/, 2012.

7. J. Richter-Gebert and U. Kortenkamp. The Cinderella.2 Manual: Working with The
Interactive Geometry Software. Springer, 2012.

8. Martin von Gagern, Ulrich Kortenkamp, Jiirgen Richter-Gebert, and Michael Stro-
bel. CindyJS — Mathematical visualization on modern devices. unpublished. Sub-
mitted to ICMS 2016 Berlin.

https://khan.github.io/KaTeX/
https://www.mathjax.org/
http://www.cs.ubc.ca/~lloyd/java/quickhull3d.html
http://www.cs.ubc.ca/~lloyd/java/quickhull3d.html
http://gagern.github.io/Cindy3D/
http://gagern.github.io/Cindy3D/

	CindyJS Plugins
	Introduction
	Plugin Interface
	Viewing spatial objects using Cindy3D and WebGL
	Typesetting formulas using KaTeX bindings
	Other plugins
	Conclusion

